Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
PLoS One ; 15(12): e0243762, 2020.
Article in English | MEDLINE | ID: covidwho-2279671

ABSTRACT

INTRODUCTION: Multiplex polymerase chain reaction (mPCR) for respiratory virus testing is increasingly used in community-acquired pneumonia (CAP), however data on one-year outcome in intensive care unit (ICU) patients with reference to the causative pathogen are scarce. MATERIALS AND METHODS: We performed a single-center retrospective study in 123 ICU patients who had undergone respiratory virus testing for CAP by mPCR and with known one-year survival status. Functional status including dyspnea (mMRC score), autonomy (ADL Katz score) and need for new home-care ventilatory support was assessed at a one-year post-ICU follow-up. Mortality rates and functional status were compared in patients with CAP of a bacterial, viral or unidentified etiology one year after ICU admission. RESULTS: The bacterial, viral and unidentified groups included 19 (15.4%), 37 (30.1%), and 67 (54.5%) patients, respectively. In multivariate analysis, one-year mortality in the bacterial group was higher compared to the viral group (HR 2.92, 95% CI 1.71-7.28, p = 0.02) and tended to be higher compared to the unidentified etiology group (p = 0.06); but no difference was found between the viral and the unidentified etiology group (p = 0.43). In 64/83 one-year survivors with a post-ICU follow-up consultation, there were no differences in mMRC score, ADL Katz score and new home-care ventilatory support between the groups (p = 0.52, p = 0.37, p = 0.24, respectively). Severe dyspnea (mMRC score = 4 or death), severe autonomy deficiencies (ADL Katz score ≤ 2 or death), and major adverse respiratory events (new home-care ventilatory support or death) were observed in 52/104 (50.0%), 47/104 (45.2%), and 65/104 (62.5%) patients, respectively; with no difference between the bacterial, viral and unidentified group: p = 0.58, p = 0.06, p = 0.61, respectively. CONCLUSIONS: CAP of bacterial origin had a poorer outcome than CAP of viral or unidentified origin. At one-year, impairment of functional status was frequently observed, with no difference according to the etiology.


Subject(s)
Community-Acquired Infections/pathology , Pneumonia, Bacterial/pathology , Pneumonia, Viral/pathology , Activities of Daily Living , Aged , Aged, 80 and over , Community-Acquired Infections/microbiology , Community-Acquired Infections/mortality , Community-Acquired Infections/virology , Dyspnea/etiology , Female , Functional Status , Hospitalization , Humans , Intensive Care Units , Kaplan-Meier Estimate , Male , Middle Aged , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/mortality , Pneumonia, Viral/mortality , Proportional Hazards Models , Respiration, Artificial , Retrospective Studies , Severity of Illness Index
2.
Saudi Med J ; 43(9): 1000-1006, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2111186

ABSTRACT

OBJECTIVES: To investigate the seroprevalence of the community-acquired bacterial that causes atypical pneumonia among confirmed severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) patients. METHODS: In this cohort study, we retrospectively investigated the seroprevalence of Chlamydia pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila among randomly selected 189 confirmed COVID-19 patients at their time of hospital presentation via commercial immunoglobulin M (IgM) antibodies against these bacteria. We also carried out quantitative measurements of procalcitonin in patients' serum. RESULTS: The seropositivity for L. pneumophila was 12.6%, with significant distribution among patientsolder than 50 years (χ2 test, p=0.009), while those of M. pneumoniae was 6.3% and C. pneumoniae was 2.1%, indicating an overall co-infection rate of 21% among COVID-19 patients. No significant difference (χ2 test, p=0.628) in the distribution of bacterial co-infections existed between male and female patients. Procalcitonin positivity was confirmed amongst 5% of co-infected patients. CONCLUSION: Our study documented the seroprevalence of community-acquired bacteria co-infection among COVID-19 patients. In this study, procalcitonin was an inconclusive biomarker for non-severe bacterial co-infections among COVID-19 patients. Consideration and proper detection of community-acquired bacterial co-infection may minimize misdiagnosis during the current pandemic and positively reflect disease management and prognosis.


Subject(s)
COVID-19 , Coinfection , Community-Acquired Infections , Pneumonia, Bacterial , Adult , COVID-19/epidemiology , Cohort Studies , Coinfection/epidemiology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Female , Humans , Immunoglobulin M , Male , Mycoplasma pneumoniae , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/microbiology , Procalcitonin , Retrospective Studies , SARS-CoV-2 , Saudi Arabia/epidemiology , Seroepidemiologic Studies
3.
PLoS One ; 17(7): e0271450, 2022.
Article in English | MEDLINE | ID: covidwho-1951555

ABSTRACT

BACKGROUND: Around 12-20% of patients with community-acquired pneumonia (CAP) require critical care. Ventilator-associated pneumonia (VAP) is the second cause of nosocomial infection in Paediatric Intensive Care Units (PICU). As far as we know, there are no studies comparing both types of pneumonia in children, thus it remains unclear if there are differences between them in terms of severity and outcomes. OBJECTIVE: The aim was to compare clinical and microbiological characteristics and outcomes of patients with severe CAP and VAP. METHODS: A retrospective descriptive study, including patients diagnosed of VAP and CAP, with a positive respiratory culture and under mechanical ventilation, admitted to the PICU from 2015 to 2019. RESULTS: 238 patients were included; 163 (68.4%) with CAP, and 75 (31.5%) with VAP. Patients with VAP needed longer mechanical ventilation (14 vs. 7 days, p<0.001) and more inotropic support (49.3 vs. 30.7%, p = 0.006). Patients with VAP had higher mortality (12 vs. 2.5%, p = 0.005). Enterobacterales were more involved with VAP than with CAP (48 vs. 9%, p<0.001). Taking into account only the non-drug sensitive microorganisms, patients with VAP tended to have more multidrug-resistant bacteria (30 vs. 10.8%, p = 0.141) than patients with CAP. CONCLUSION: Patients with VAP had worse prognosis than patients with CAP, needing longer mechanical ventilation, more inotropic support and had higher mortality. Patients with VAP were mainly infected by Enterobacterales and had more multidrug resistant microorganisms than patients with CAP.


Subject(s)
Community-Acquired Infections , Pneumonia, Bacterial , Pneumonia, Ventilator-Associated , Child , Community-Acquired Infections/microbiology , Community-Acquired Infections/therapy , Humans , Intensive Care Units, Pediatric , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/therapy , Pneumonia, Ventilator-Associated/microbiology , Pneumonia, Ventilator-Associated/therapy , Prognosis , Respiration, Artificial/adverse effects , Respiration, Artificial/statistics & numerical data , Retrospective Studies
4.
Microbiol Spectr ; 9(3): e0069521, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1597074

ABSTRACT

Bacterial pneumonia is a challenging coronavirus disease 2019 (COVID-19) complication for intensive care unit (ICU) clinicians. Upon its implementation, the FilmArray pneumonia plus (FA-PP) panel's practicability for both the diagnosis and antimicrobial therapy management of bacterial pneumonia was assessed in ICU patients with COVID-19. Respiratory samples were collected from patients who were mechanically ventilated at the time bacterial etiology and antimicrobial resistance were determined using both standard-of-care (culture and antimicrobial susceptibility testing [AST]) and FA-PP panel testing methods. Changes to targeted and/or appropriate antimicrobial therapy were reviewed. We tested 212 samples from 150 patients suspected of bacterial pneumonia. Etiologically, 120 samples were positive by both methods, two samples were culture positive but FA-PP negative (i.e., negative for on-panel organisms), and 90 were negative by both methods. FA-PP detected no culture-growing organisms (mostly Staphylococcus aureus or Pseudomonas aeruginosa) in 19 of 120 samples or antimicrobial resistance genes in two culture-negative samples for S. aureus organisms. Fifty-nine (27.8%) of 212 samples were from empirically treated patients. Antibiotics were discontinued in 5 (33.3%) of 15 patients with FA-PP-negative samples and were escalated/deescalated in 39 (88.6%) of 44 patients with FA-PP-positive samples. Overall, antibiotics were initiated in 87 (72.5%) of 120 pneumonia episodes and were not administered in 80 (87.0%) of 92 nonpneumonia episodes. Antimicrobial-resistant organisms caused 78 (60.0%) of 120 episodes. Excluding 19 colistin-resistant Acinetobacter baumannii episodes, AST confirmed appropriate antibiotic receipt in 101 (84.2%) of 120 episodes for one or more FA-PP-detected organisms. Compared to standard-of-care testing, the FA-PP panel may be of great value in the management of COVID-19 patients at risk of developing bacterial pneumonia in the ICU. IMPORTANCE Since bacterial pneumonia is relatively frequent, suspicion of it in COVID-19 patients may prompt ICU clinicians to overuse (broad-spectrum) antibiotics, particularly when empirical antibiotics do not cover the suspected pathogen. We showed that a PCR-based, culture-independent laboratory assay allows not only accurate diagnosis but also streamlining of antimicrobial therapy for bacterial pneumonia episodes. We report on the actual implementation of rapid diagnostics and its real-life impact on patient treatment, which is a gain over previously published studies on the topic. A better understanding of the role of that or similar PCR assays in routine ICU practice may lead us to appreciate the effectiveness of their implementation during the COVID-19 pandemic.


Subject(s)
COVID-19/complications , Hospitals , Multiplex Polymerase Chain Reaction/methods , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/drug therapy , Aged , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , COVID-19/diagnosis , COVID-19 Testing/methods , Critical Illness , Female , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Patient Acuity , Pneumonia, Bacterial/microbiology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
5.
Diagn Microbiol Infect Dis ; 101(3): 115476, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1544965

ABSTRACT

Among critically ill COVID-19 patients, bacterial coinfections may occur, and timely appropriate therapy may be limited with culture-based microbiology due to turnaround time and diagnostic yield challenges (e.g. antibiotic pre-exposure). We performed a systematic review and meta-analysis of the impact of BioFire® FilmArray® Pneumonia Panel in detecting bacteria and clinical management among critically ill COVID-19 patients admitted to the ICU. Seven studies with 558 patients were included. Antibiotic use before respiratory sampling occurred in 28-79% of cases. The panel incidence of detections was 33% (95% CI 0.25 to 0.41, I2=32%) while culture yielded 18% (95% CI 0.02 to 0.45; I2=93%). The panel was associated with approximately a 1 and 2 day decrease in turnaround for identification and common resistance targets, respectively. The panel may be an important tool for clinicians to improve antimicrobial use in critically ill COVID-19 patients.


Subject(s)
COVID-19/complications , COVID-19/pathology , Coinfection/diagnosis , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/diagnosis , SARS-CoV-2/isolation & purification , Critical Illness , Humans , Molecular Diagnostic Techniques , Pneumonia, Bacterial/microbiology , Sensitivity and Specificity
6.
Diagn Microbiol Infect Dis ; 101(3): 115507, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1345315

ABSTRACT

The FilmArray Pneumonia Panel has proven to be an effective tool for rapid detection of main respiratory pathogens. However, its rational use needs appropriate knowledge and formation regarding its indication and interpretation. Herein, we provide some advices to help with success of its daily routine use, particularly in critically ill ventilated COVID-19 patients. Clinical Trial registration number: NCT04453540.


Subject(s)
COVID-19/complications , Critical Illness , Molecular Diagnostic Techniques/methods , Pneumonia, Bacterial/complications , Respiration, Artificial , SARS-CoV-2 , Algorithms , Coinfection/diagnosis , Humans , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology
7.
Int J Mol Sci ; 22(8)2021 Apr 08.
Article in English | MEDLINE | ID: covidwho-1299441

ABSTRACT

Pneumonia due to respiratory infection with most prominently bacteria, but also viruses, fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global threat. As such, a better understanding of pathogen virulence on the one, and the development of innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of men against microbes. Recent data show that the secretome of bacteria consists not only of soluble mediators of virulence but also to a significant proportion of extracellular vesicles-lipid bilayer-delimited particles that form integral mediators of intercellular communication. Extracellular vesicles are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity. In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and their immunogenic potential could pave the way to novel treatment strategies in pneumonia and effective preventive approaches.


Subject(s)
Bacteria/metabolism , Bacterial Outer Membrane/metabolism , Extracellular Vesicles/metabolism , Pneumonia, Bacterial/microbiology , Adaptive Immunity , Animals , Antigens, Bacterial/immunology , Bacteria/immunology , Bacterial Outer Membrane/immunology , Bacterial Vaccines/immunology , Host-Pathogen Interactions/immunology , Humans , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/prevention & control , Respiratory Mucosa/immunology , Respiratory Mucosa/microbiology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Virulence
8.
Adv Drug Deliv Rev ; 176: 113811, 2021 09.
Article in English | MEDLINE | ID: covidwho-1239473

ABSTRACT

Pneumonia is among the leading causes of morbidity and mortality worldwide. Due to constant evolution of respiratory bacteria and viruses, development of drug resistance and emerging pathogens, it constitutes a considerable health care threat. To enable development of novel strategies to control pneumonia, a better understanding of the complex mechanisms of interaction between host cells and infecting pathogens is vital. Here, we review the roles of host cell and bacterial-derived extracellular vesicles (EVs) in these interactions. We discuss clinical and experimental as well as pathogen-overarching and pathogen-specific evidence for common viral and bacterial elicitors of community- and hospital-acquired pneumonia. Finally, we highlight the potential of EVs for improved management of pneumonia patients and discuss the translational steps to be taken before they can be safely exploited as novel vaccines, biomarkers, or therapeutics in clinical practice.


Subject(s)
Extracellular Vesicles/metabolism , Pneumonia, Bacterial/microbiology , Pneumonia, Viral/microbiology , Animals , Community-Acquired Infections/microbiology , Community-Acquired Infections/therapy , Drug Resistance, Microbial , Healthcare-Associated Pneumonia/microbiology , Healthcare-Associated Pneumonia/therapy , Host Microbial Interactions , Humans , Pneumonia, Bacterial/therapy , Pneumonia, Viral/therapy
10.
Infection ; 49(4): 591-605, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1130951

ABSTRACT

BACKGROUND: The incidence of secondary pulmonary infections is not well described in hospitalized COVID-19 patients. Understanding the incidence of secondary pulmonary infections and the associated bacterial and fungal microorganisms identified can improve patient outcomes. OBJECTIVE: This narrative review aims to determine the incidence of secondary bacterial and fungal pulmonary infections in hospitalized COVID-19 patients, and describe the bacterial and fungal microorganisms identified. METHOD: We perform a literature search and select articles with confirmed diagnoses of secondary bacterial and fungal pulmonary infections that occur 48 h after admission, using respiratory tract cultures in hospitalized adult COVID-19 patients. We exclude articles involving co-infections defined as infections diagnosed at the time of admission by non-SARS-CoV-2 viruses, bacteria, and fungal microorganisms. RESULTS: The incidence of secondary pulmonary infections is low at 16% (4.8-42.8%) for bacterial infections and lower for fungal infections at 6.3% (0.9-33.3%) in hospitalized COVID-19 patients. Secondary pulmonary infections are predominantly seen in critically ill hospitalized COVID-19 patients. The most common bacterial microorganisms identified in the respiratory tract cultures are Pseudomonas aeruginosa, Klebsiella species, Staphylococcus aureus, Escherichia coli, and Stenotrophomonas maltophilia. Aspergillus fumigatus is the most common microorganism identified to cause secondary fungal pulmonary infections. Other rare opportunistic infection reported such as PJP is mostly confined to small case series and case reports. The overall time to diagnose secondary bacterial and fungal pulmonary infections is 10 days (2-21 days) from initial hospitalization and 9 days (4-18 days) after ICU admission. The use of antibiotics is high at 60-100% involving the studies included in our review. CONCLUSION: The widespread use of empirical antibiotics during the current pandemic may contribute to the development of multidrug-resistant microorganisms, and antimicrobial stewardship programs are required for minimizing and de-escalating antibiotics. Due to the variation in definition across most studies, a large, well-designed study is required to determine the incidence, risk factors, and outcomes of secondary pulmonary infections in hospitalized COVID-19 patients.


Subject(s)
COVID-19/complications , Lung Diseases, Fungal/epidemiology , Pneumonia, Bacterial/epidemiology , SARS-CoV-2 , Anti-Bacterial Agents/therapeutic use , Antimicrobial Stewardship , COVID-19/epidemiology , Coinfection/diagnosis , Coinfection/drug therapy , Coinfection/epidemiology , Coinfection/microbiology , Drug Resistance, Multiple , Humans , Incidence , Lung Diseases, Fungal/etiology , Lung Diseases, Fungal/microbiology , Pneumonia, Bacterial/etiology , Pneumonia, Bacterial/microbiology , Time Factors
11.
Eur J Clin Microbiol Infect Dis ; 40(12): 2479-2485, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1116614

ABSTRACT

The study was undertaken to evaluate the performance of Unyvero Hospitalized Pneumonia (HPN) panel application, a multiplex PCR-based method for the detection of bacterial pathogens from lower respiratory tract (LRT) samples, obtained from COVID-19 patients with suspected secondary hospital-acquired pneumonia. Residual LRT samples obtained from critically ill COVID-19 patients with predetermined microbiological culture results were tested using the Unyvero HPN Application. Performance evaluation of the HPN Application was carried out using the standard-of-care (SoC) microbiological culture findings as the reference method. Eighty-three LRT samples were used in the evaluation. The HPN Application had a full concordance with SoC findings in 59/83 (71%) samples. The new method detected additional bacterial species in 21 (25%) and failed at detecting a bacterial species present in lower respiratory culture in 3 (3.6%) samples. Overall the sensitivity, specificity, positive, and negative predictive values of the HPN Application were 95.1% (95%CI 96.5-98.3%), 98.3% (95% CI 97.5-98.9%), 71.6% (95% CI 61.0-80.3%), and 99.8% (95% CI 99.3-99.9%), respectively. In conclusion, the HPN Application demonstrated higher diagnostic yield in comparison with the culture and generated results within 5 h.


Subject(s)
Bacteria/isolation & purification , COVID-19/complications , Cross Infection/microbiology , Multiplex Polymerase Chain Reaction/methods , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Adult , Aged , Bacteria/classification , Bacteria/genetics , COVID-19/virology , Cross Infection/etiology , Female , Hospitals , Humans , Lung/microbiology , Male , Middle Aged , Pneumonia, Bacterial/etiology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sweden
12.
J Glob Health ; 10(2): 020504, 2020 12.
Article in English | MEDLINE | ID: covidwho-1106353

ABSTRACT

BACKGROUND: We are communicating the results of investigating statistics on SARS-CoV-2-related pneumonias in Russia: percentage, mortality, cases with other viral agents, cases accompanied by secondary bacterial pneumonias, age breakdown, clinical course and outcome. METHODS: We studied two sampling sets (Set 1 and Set 2). Set 1 consisted of results of testing 3382 assays of out-patients and hospital patients (5-88 years old) with community-acquired and hospital-acquired pneumonia of yet undetermined aetiology. Set 2 contained results of 1204 assays of hospital patients (12-94 years old) with pneumonia and COVID-19 already diagnosed by molecular biological techniques in test laboratories. The results were collected in twelve Russian cities/provinces in time range 2 March - 5 May 2020. Assays were analysed for 10 bacterial, 15 viral, 2 fungal and 2 parasitic aetiological agents. RESULTS: In Set 1, 4.35% of total pneumonia cases were related to SARS-CoV-2, with substantially larger proportion (18.75%) of deaths of pneumonia with COVID-19 diagnosed. However, studying Set 2, we revealed that 52.82% patients in it were also positive for different typical and atypical aetiological agents usually causing pneumonia. 433 COVID-19 patients (35.96%) were tested positive for various bacterial aetiological agents, with Streptococcus pneumoniae, Staphylococcus aureus and Haemophilus influenzae infections accounting for the majority of secondary pneumonia cases. CONCLUSIONS: SARS-CoV-2, a low-pathogenic virus itself, becomes exceptionally dangerous if secondary bacterial pneumonia attacks a COVID-19 patient as a complication. An essential part of the severest complications and mortality associated with COVID-19 in Russia in March-May 2020, may be attributed to secondary bacterial pneumonia and to a much less extent viral co-infections. The problem of hospital-acquired bacterial infection is exceptionally urgent in treating SARS-CoV-2 patients. The risk of secondary bacterial pneumonia and its further complications, should be given very serious attention in combating SARS-CoV-2.


Subject(s)
Betacoronavirus , Coinfection/mortality , Coronavirus Infections/mortality , Healthcare-Associated Pneumonia/mortality , Pneumonia, Bacterial/mortality , Pneumonia, Viral/mortality , Virus Diseases/mortality , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Coinfection/microbiology , Coronavirus Infections/microbiology , Female , Healthcare-Associated Pneumonia/microbiology , Humans , Male , Middle Aged , Pandemics , Pneumonia, Bacterial/microbiology , Pneumonia, Viral/microbiology , Russia/epidemiology , SARS-CoV-2 , Virus Diseases/microbiology , Young Adult
13.
Interdiscip Sci ; 13(2): 273-285, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1103577

ABSTRACT

Computed tomography (CT) is one of the most efficient diagnostic methods for rapid diagnosis of the widespread COVID-19. However, reading CT films brings a lot of concentration and time for doctors. Therefore, it is necessary to develop an automatic CT image diagnosis system to assist doctors in diagnosis. Previous studies devoted to COVID-19 in the past months focused mostly on discriminating COVID-19 infected patients from healthy persons and/or bacterial pneumonia patients, and have ignored typical viral pneumonia since it is hard to collect samples for viral pneumonia that is less frequent in adults. In addition, it is much more challenging to discriminate COVID-19 from typical viral pneumonia as COVID-19 is also a kind of virus. In this study, we have collected CT images of 262, 100, 219, and 78 persons for COVID-19, bacterial pneumonia, typical viral pneumonia, and healthy controls, respectively. To the best of our knowledge, this was the first study of quaternary classification to include also typical viral pneumonia. To effectively capture the subtle differences in CT images, we have constructed a new model by combining the ResNet50 backbone with SE blocks that was recently developed for fine image analysis. Our model was shown to outperform commonly used baseline models, achieving an overall accuracy of 0.94 with AUC of 0.96, recall of 0.94, precision of 0.95, and F1-score of 0.94. The model is available in https://github.com/Zhengfudan/COVID-19-Diagnosis-and-Pneumonia-Classification .


Subject(s)
COVID-19/diagnostic imaging , Deep Learning , Diagnosis, Computer-Assisted , Lung/diagnostic imaging , Multidetector Computed Tomography , Pneumonia, Bacterial/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted , COVID-19/virology , Case-Control Studies , Diagnosis, Differential , Humans , Lung/microbiology , Lung/virology , Pneumonia, Bacterial/microbiology , Pneumonia, Viral/virology , Predictive Value of Tests , Reproducibility of Results
15.
Diagn Microbiol Infect Dis ; 99(1): 115183, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1023526

ABSTRACT

The FilmArray® Pneumonia Plus (FA-PP) panel can provide rapid identifications and semiquantitative results for many pathogens. We performed a prospective single-center study in 43 critically ill patients with coronavirus disease 2019 (COVID-19) in which we performed 96 FA-PP tests and cultures of blind bronchoalveolar lavage (BBAL). FA-PP detected 1 or more pathogens in 32% (31/96 of samples), whereas culture methods detected at least 1 pathogen in 35% (34/96 of samples). The most prevalent bacteria detected were Pseudomonas aeruginosa (n = 14) and Staphylococcus aureus (n = 11) on both FA-PP and culture. The FA-PP results from BBAL in critically ill patients with COVID-19 were consistent with bacterial culture findings for bacteria present in the FA-PP panel, showing sensitivity, specificity, and positive and negative predictive value of 95%, 99%, 82%, and 100%, respectively. Median turnaround time for FA-PP was 5.5 h, which was significantly shorter than for standard culture (26 h) and antimicrobial susceptibility testing results (57 h).


Subject(s)
Bacteria/isolation & purification , Bacteriological Techniques/methods , COVID-19/complications , Multiplex Polymerase Chain Reaction/methods , Pneumonia, Bacterial/diagnosis , Aged , Bacteria/classification , Bacteria/genetics , Bronchoalveolar Lavage Fluid/microbiology , Critical Illness , Female , Humans , Male , Middle Aged , Pneumonia, Bacterial/microbiology , SARS-CoV-2 , Sensitivity and Specificity , Time Factors
17.
Int J Infect Dis ; 95: 74-83, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-826783

ABSTRACT

OBJECTIVES: The study aim was to describe the etiological profile and clinical characteristics of pneumonia among children hospitalized in Thimphu, Bhutan. METHODS: This prospective study enrolled children aged 2-59 months admitted to the Jigme Dorji Wangchuck National Referral Hospital with World Health Organization (WHO)-defined clinical pneumonia. Demographic and clinico-radiological data were collected through questionnaires, physical examination, and chest radiography. Blood samples and nasopharyngeal washing were collected for microbiological analysis including culture and molecular methods. RESULTS: From July 2017 to June 2018, 189 children were enrolled, of which 53.4% were infants. Pneumonia-related admissions were less frequent over the winter. Chest radiographies were obtained in 149 children; endpoints included pneumonia in 39 cases (26.2%), other infiltrates in 31 (20.8%), and were normal in 79 children (53.0%). Non-contaminated bacterial growth was detected in 8/152 (5.3%) blood cultures, with only two cases of Streptococcus pneumoniae. Viral detection in upper respiratory secretions was common, with at least one virus detected in 103/115 (89.6%). The three most-commonly isolated viruses were respiratory syncytial virus (52/115; 45.2%), rhinovirus (42/115; 36.5%), and human parainfluenza virus (19/115; 16.5%). A third of patients with viral infections showed mixed infections. Case fatality rate was 3.2% (6/189). CONCLUSION: Respiratory viral infections predominated among this cohort of WHO-defined clinical pneumonia cases, whereas bacterial aetiologies were uncommon, highlighting the epidemiologic transition that Bhutan seems to have reached.


Subject(s)
Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Bacteria/isolation & purification , Bhutan/epidemiology , Child, Preschool , Cohort Studies , Coinfection/epidemiology , Demography , Female , Hospitalization , Humans , Infant , Male , Pneumonia/epidemiology , Pneumonia/mortality , Pneumonia, Bacterial/diagnostic imaging , Pneumonia, Bacterial/microbiology , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/virology , Prospective Studies , Respiratory Syncytial Virus, Human/isolation & purification , Respirovirus/isolation & purification , Rhinovirus/isolation & purification , Streptococcus pneumoniae/isolation & purification
18.
Clin Microbiol Infect ; 27(1): 61-66, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-808838

ABSTRACT

SCOPE: The Dutch Working Party on Antibiotic Policy constituted a multidisciplinary expert committee to provide evidence-based recommendation for the use of antibacterial therapy in hospitalized adults with a respiratory infection and suspected or proven 2019 Coronavirus disease (COVID-19). METHODS: We performed a literature search to answer four key questions. The committee graded the evidence and developed recommendations by using Grading of Recommendations Assessment, Development, and Evaluation methodology. QUESTIONS ADDRESSED BY THE GUIDELINE AND RECOMMENDATIONS: We assessed evidence on the risk of bacterial infections in hospitalized COVID-19 patients, the associated bacterial pathogens, how to diagnose bacterial infections and how to treat bacterial infections. Bacterial co-infection upon admission was reported in 3.5% of COVID-19 patients, while bacterial secondary infections during hospitalization occurred up to 15%. No or very low quality evidence was found to answer the other key clinical questions. Although the evidence base on bacterial infections in COVID-19 is currently limited, available evidence supports restrictive antibiotic use from an antibiotic stewardship perspective, especially upon admission. To support restrictive antibiotic use, maximum efforts should be undertaken to obtain sputum and blood culture samples as well as pneumococcal urinary antigen testing. We suggest to stop antibiotics in patients who started antibiotic treatment upon admission when representative cultures as well as urinary antigen tests show no signs of involvement of bacterial pathogens after 48 hours. For patients with secondary bacterial respiratory infection we recommend to follow other guideline recommendations on antibacterial treatment for patients with hospital-acquired and ventilator-associated pneumonia. An antibiotic treatment duration of five days in patients with COVID-19 and suspected bacterial respiratory infection is recommended upon improvement of signs, symptoms and inflammatory markers. Larger, prospective studies about the epidemiology of bacterial infections in COVID-19 are urgently needed to confirm our conclusions and ultimately prevent unnecessary antibiotic use during the COVID-19 pandemic.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , COVID-19 Drug Treatment , Opportunistic Infections/drug therapy , Pneumonia, Bacterial/drug therapy , SARS-CoV-2/pathogenicity , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Bacterial Typing Techniques , Bias , Blood Culture/methods , COVID-19/microbiology , COVID-19/virology , Coinfection , Evidence-Based Medicine , Humans , Opportunistic Infections/diagnosis , Opportunistic Infections/microbiology , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Sputum/microbiology
20.
J Aerosol Med Pulm Drug Deliv ; 33(6): 357-360, 2020 12.
Article in English | MEDLINE | ID: covidwho-733423

ABSTRACT

Interruptions in continuous nebulized pulmonary vasodilators, such as epoprostenol, can potentially result in clinical deterioration in respiratory status. Coadministration of other intermittent nebulized therapies may require opening the ventilator circuit to facilitate administration. However, in patients with SARS-CoV2 infection, it is preferred to avoid opening the circuit whenever feasible to prevent aerosolization of the virus and exposure of health care workers. In this study, we describe a unique method of administering continuous epoprostenol nebulization and intermittent nebulized antibiotics, mucolytics, and bronchodilators, using Aerogen vibrating mesh nebulizers without interruptions in epoprostenol or opening the ventilator circuit. This technique set up consisted of stacking two Aerogen nebulizer cups, each with its own controller. This approach was successful in allowing concomitant delivery of intermittent and continuous nebulized therapy without interruptions. To our knowledge, this method has not been previously described in the literature and may be helpful to bedside clinicians facing a similar clinical scenario.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bronchodilator Agents/administration & dosage , COVID-19 Drug Treatment , COVID-19/therapy , Cross Infection/drug therapy , Nebulizers and Vaporizers , Pneumonia, Bacterial/drug therapy , Respiration, Artificial , Administration, Inhalation , COVID-19/diagnosis , COVID-19/physiopathology , Cross Infection/diagnosis , Cross Infection/microbiology , Drug Administration Schedule , Drug Resistance, Multiple, Bacterial , Equipment Design , Fatal Outcome , Humans , Male , Middle Aged , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL